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Abstract

As social networks become the primary sources of informa-
tion, the rise of misinformation poses a significant threat to
the information ecosystem. Here, we address this challenge
by proposing a dynamic system for real-time evaluation and
assignment of misinformation scores to tweets, which can
support the ongoing efforts to counteract the impact of misin-
formation public health, public opinion, and society. We use a
unique combination of Temporal Graph Network (TGN) and
Recurrent Neural Networks (RNNs) to capture both structural
and temporal characteristics of misinformation propagation.
We further use active learning to refine the understanding of
misinformation, and a dual model system to ensure the accu-
rate grading of tweets. Our system also incorporates a tem-
poral embargo strategy based on belief scores, allowing for
comprehensive assessment of information over time. We fur-
ther outline a retraining strategy to keep the model current and
robust in the dynamic misinformation landscape. The evalu-
ation results across five social media misinformation datasets
show promising accuracy in identifying false information and
reducing propagation by a significant margin.

Introduction

The emergence of social networks as a primary source of
information has brought with it the rise of misinforma-
tion, a challenge that threatens the very fabric of our infor-
mation ecosystem (Meel and Vishwakarma|[2020). Rapid,
unchecked propagation of unverified information on these
platforms can have far-reaching societal impact, including
influencing public opinion (Allcott and Gentzkow|2017), ex-
acerbating polarization (Tucker et al.|2018)), and even jeop-
ardising public health (Wang et al||2019). The unprece-
dented transition from traditional news media, where the
roles of the journalists and the consumers are well-defined,
to the democratic landscape of social media, where news
is crowd-sourced and anyone can function as a reporter,
has posed significant challenges. As a result, there is an
increasing trend of traditional news outlets to disseminate
unverified information in an attempt to stay ahead of the
curve (Fung et al.[2022). A pertinent example of this is the
Russia—Ukraine conflict, where numerous reports are hastily
published, leading to confusion and misinterpretation of the
actual events on the ground (Park et al.[2022).
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At the same time, news consumers, i.e., the general pub-
lic, find it difficult to discern fact from fiction given the speed
at which the news spreads, and the varying degrees of relia-
bility, e.g., unverified claims and conspiracy theories circu-
lated widely on social media platforms, leading to confusion
and hesitancy about vaccine safety and efficacy.

The real-time identification and mitigation of such mis-
information are increasingly pressing research challenges.
First and foremost, the deliberate crafting of fake news
with the intent to deceive readers inherently complicates its
identification based purely on content analysis (Vosoughi,
Mohsenvand, and Roy| 2017). This issue is further com-
pounded by the characteristics of social media data, which
is voluminous, multimodal, predominantly user-generated,
occasionally anonymized, and frequently plagued by noise,
thereby exacerbating the complexity of the detection pro-
cess. In addition, the inherent structure of social media plat-
forms enables a low-cost and rapid diffusion of news con-
tent. This rapid propagation capability allows for the swift
and widespread dissemination of information, regardless of
its veracity, through intricate network structures. This aug-
ments the difficulty of identifying and halting the prolifer-
ation of fake news in its early stages. The urgency and the
scale of the task pose considerable challenges to the devel-
opment of effective countermeasures as well.

Limitations and Challenges

Existing methods (See I Related Work) to detect and to
grade misinformation, however, are met with significant
challenges and limitations: (I) Static Evaluation: Existing
models predominantly use static scoring systems, which
prove inadequate due to their failure to adapt to the dynamic
nature of social networks. This lack of adaptability often re-
sults in delayed detection of misinformation. (II) Temporal
Oversights: Current approaches typically do not account for
temporal changes in the information context or the continu-
ous influx of new data, leading to suboptimal detection and
grading accuracy. (III) Immediate Classification: It may not
always be possible or accurate, particularly in the face of
uncertain or incomplete information. (IV) Scalability Con-
cerns: The enormous scale of the data on social media and
the high user activity levels pose significant computational
efficiency and scalability challenges to existing methods.



Motivating Examples. In our misinformation grading
system, a tweet is assigned a score ranging from 1 to 5.
A score of 1 indicates an entirely accurate tweet, 2 is for
a largely accurate tweet that contains minor inaccuracies, 3
denotes a tweet with significant inaccuracy, yet still holding
some elements of truth, 4 is a mostly false tweets with minor
truthful elements, and 5 represents a completely false tweet.
The factuality analysis of a tweet can culminate in one of
three ways: it can be confirmed as true (scores 1 or 2), proven
as false (scores 4 or 5), or remain unresolved (most likely
score 3). Given a single event or topic, multiple variations of
misinformation can circulate simultaneously, each holding
varying degrees of truth. The resolution of one tweet can of-
ten lead to the automatic resolution of other related tweets.
For instance, in the context of the Russia—Ukraine conflict,
consider a situation where false information is circulating in
social media about the origins of a particular military esca-
lation: (1) The escalation was triggered by a minor border
incident involving local forces. (Score of 3, as it is partially
true that the conflict started from a border incident; however,
this ignores the larger geopolitical context.) (2) The escala-
tion was entirely instigated by Ukraine. (Score of 5, as this
completely ignores Russia’s role.) (3) The escalation was
completely unprovoked and unexpected. (Score of 5, as it is
false given that there were clear signs of escalating tensions.)
(4) The escalation was the result of long-standing tensions
between Russia and Ukraine, magnified by a specific border
incident. (Score of 1, assuming this is a confirmed truth.)
Now, once (4) is confirmed as true, it invalidates (2) and (3)
entirely and provides additional context for (1). Thus, we
demonstrated two important issues: (a) the need for continu-
ous and real-time evaluation of the information shared on so-
cial media, assigning a misinformation score that could help
users gauge the veracity of a tweet instantly; (b) the need for
an adaptive model to account for the dynamic nature of so-
cial media content, which becomes vital in situations where
the context and the validity of information may change over
time, as seen in the evolving narratives during conflicts or
health crises in COVID-19 (Loomba et al.[2021).

Contributions

We address these issues by proposing a dynamic, compre-
hensive system to evaluate and to assign misinformation
scores to tweets in real time. We make several contributions:

e Integration of TGNs and RNNs: We combine Temporal
Graph Networks (TGNs) and Recurrent Neural Networks
(RNNs) to capture both structural and temporal char-
acteristics of misinformation propagation. RNNs model
temporal aspects, considering the content and the associ-
ated timestamped events, while TGNs capture both struc-
tural and temporal aspects by maintaining evolving node-
level states based on interactions and timestamps. TGN’
use temporal message passing and memory modules to
capture the spread of misinformation over time and to
identify key propagators in the network. This novel com-
bination enables quick adaptation to changes in the infor-
mation context, thereby enhancing the timeliness and the
accuracy of misinformation detection.

* Active Learning: Our system uses active learning tech-
niques to iteratively refine its understanding of misinfor-
mation, soliciting feedback on the most uncertain or chal-
lenging cases, leading to improved accuracy over time.

* Dual Model System: We propose a unique dual-model
system that comprises a strict model with a higher thresh-
old for identifying misinformation and a normal model,
following a more lenient approach. By combining the
outputs of these models, we ensure a more nuanced and
accurate grading, improving the system’s reliability.

We propose the concept of a “temporal embargo”, which
refers to the practice of withholding judgment on the verac-
ity of a piece of information for a certain time period. This
delay allows for a more comprehensive assessment, as ad-
ditional context or information might emerge over time that
can influence the final decision. The belief score is a measure
of the model’s confidence in the veracity of a piece of infor-
mation. In this work, we propose a novel dynamic assess-
ment model that, rather than issuing an immediate verdict,
implements a temporal embargo based on the belief score.
If the belief score falls within a certain range, indicating un-
certainty, the model will withhold the judgment for different
time intervals, periodically reassessing the information until
the model’s prediction stabilizes or new information arises.
The challenge lies in determining the appropriate embargo
periods and the belief score thresholds, as well as ensur-
ing that the model can adapt and scale to the high volume
and real-time nature of social media content. We investigate
the effectiveness of this temporal embargo strategy in reduc-
ing misinformation propagation across various social media
misinformation datasets. Our system achieves promising ac-
curacy in identifying false information on five datasets.

Problem Statement

The objectives of our system are as follows:

(1) To develop a system that continuously evaluates and
assigns a misinformation score to tweets in a social network,
on a scale from 1 (completely true) to 5 (completely false).
Formally, given a set ' = {t1,1o,...,t,} of tweets, and a
function F' : T — [1, 5], the problem is to design a system
S such that, for each tweet ¢; € T, computes F(¢;) in real-
time, where F'(t;) represents the misinformation score of ¢;.

(2) To develop an effective and adaptive model for mis-
information detection that takes into account the dynamic
nature of social media content and incorporates a temporal
embargo strategy based on belief (confidence of the model’s
prediction) scores of the misinformation classification mod-
els. Formally, given a set T' = {t1,t2,...,t,} of tweets, a
function F' : T — [1,5], a dynamic nature of social me-
dia content represented by a time-varying function G(t), the
problem is to design an adaptive model M that, for each
tweet t;, € T, computes F'(¢;) at time G(t), and incorpo-
rates a temporal embargo strategy based on belief scores
B : M — [0,1] of the misinformation classification mod-
els. B(M) represents the belief score of model M, such that
B(M) = 0 implies no belief in the model’s classification,
and B(M) = 1 implies complete belief in the model’s clas-
sification.



To study the impact of retraining in an incremental train-
ing step, looking into aspects such as periodicity, change de-
tection in the network, and linguistic score change. Given a
model M, aset T = {t1,ta,...,t,} of tweets, a function
F : T — [1,5], a time-varying function G(t) representing
the dynamic nature of social media content, and a change
detection function A : (T,G) — {0, 1}, the problem is to
define a retraining strategy R : M x A — M’ such that M’
is an improved model after retraining. The retraining strat-
egy must consider factors such as the periodicity P of re-
training, represented by a function P : M — N, and the
linguistic score change L : T' x M — R, where L(t;, M)
is the change in the misinformation score for tweet ¢; under
model M.

The problem statements outlined here address aspects that
have not been adequately tackled by existing approaches.
While previously developed systems attempt to classify mis-
information, our work (R1) to assign a continually updating
misinformation score to social media posts in real time is
an advancement over previous work. This dynamic scoring
system can promptly identify the spread of harmful misin-
formation before it gains traction, a capability not fully real-
ized in current models. Next, incorporating a temporal em-
bargo strategy (R2) based on the belief scores of the mis-
information classification models, allows for a better under-
standing of the information’s veracity over time. This adapt-
ability is essential to account for changes in the content, the
context, and the tactics adopted by misinformation spread-
ers. While the importance of model training and retraining
is recognized, the outlined strategy (R3) for defining a sys-
tematic and context-responsive retraining approach is a sub-
stantial contribution. This strategy takes into account factors
such as periodicity, network change detection, and linguistic
score changes, thus ensuring that the model remains current
and robust in the dynamic misinformation landscape. This
adaptive approach to retraining is not adequately covered in
current methodologies.

Proposed Framework

Our proposed framework for misinformation detection com-
bines several novel elements: a dynamic grading system that
adapts to new information or to context changes, incorpo-
ration of temporal features to capture the evolution of mis-
information over time, use of active learning techniques to
refine the model’s understanding of misinformation and its
spread, and adoption of a dual grading system combining a
strict and a normal model.

Dynamic Grading System (DGS)

The Dynamic Grading System (DGS) aims to provide a
more responsive and adaptable measure of misinformation,
accounting for the fluctuating nature of information spread
in social media. The grading system is based on the concept
of misinformation scores, which are continuously updated
as new information or user feedback comes in. Each piece
of content (e.g., a tweet) is assigned a misinformation score
b € [1, 5], with 1 denoting absolute truth and 5 denoting ab-
solute falsehood.

Incremental Learning. We adopt an incremental learning
strategy to update misinformation scores as new data comes
in. Here, new data does not only mean a new tweet, but a
variety of contextual elements. This includes the profiles of
users who retweet or like the tweet, the time at which the
tweet was propagated, the network of users who interacted
with the tweet, and the sentiment and the content (agree
or disagree towards the topic of the discourse) of any re-
sponses. Let X; denote the set of features associated with
a tweet at time ¢, and b; denote its misinformation score
at time ¢. The model learns a function [’ : X;,C; — b;
that maps features to misinformation scores. Here, C, repre-
sents the contextual features at time ¢. When new data X, ;
comes in at time ¢ + 1, the model updates its function f to
f: Xiea1,Ciiq — by, effectively learning from the new
data. Formally, the model updates its function as follows:

I = fro (b= (Xig1, Cig1)) V' (Xi41, Crgr) (D

where « is the learning rate, V f/(X;11, Ci11) is the gradi-
ent of f’ with respect to (Xy41,Ci41). The term (by1 —
f'(X¢41,Ceq1)) represents the error in the model’s predic-
tion at time ¢ + 1, considering both the tweet and its context.

Real-Time Feedback. In addition to incremental learn-
ing, we incorporate real-time user feedback into our dy-
namic grading system. We introduce a feedback function
g : R — [0, 1], where R represents user reactions,e.g., likes,
shares, comments. This function maps user reactions to mis-
information score adjustments, which are then used to up-
date the misinformation score of a tweet. Formally, the up-
dated misinformation score by at time ¢ + 1 is computed
as follows:

bey1 =be + - g(Rey1) 2

where [ is a parameter controlling the impact of user feed-
back on misinformation scores, and R, is the user reac-
tions at time ¢ + 1.

For each tweet, our system can query a set of trusted fact-
checking websites, e.g., Snopes, PolitiFact, FullFact etcm
with the key claims present in the text. These sites then re-
turn a fact-checking score f. € [1, 5] based on their assess-
ment of the claim, with 1 indicating that the claim is entirely
true, and 5 meaning that the claim is entirely false. Next,
to integrate the fact-checking score with the existing misin-
formation score by, we introduce a fact-checking weight pa-
rameter v € [0, 1]. The updated misinformation score b1
at time ¢ 4 1 is then computed as follows:

biyr=1—=7)-(be +B8-9(Rez1)) +v-fe 3

The fact-checking weight parameter v determines the im-
portance of the fact-checking score relative to the updated
misinformation score. To make the system more responsive
to real-time events, we make the fact-checking weight ~
adaptive. In situations where the fact-checking score and the
misinformation score are significantly different, we increase
~ to put more emphasis on the fact-checking score. Con-
versely, when the scores are relatively similar, we decrease
~ to put more weight on the updated misinformation score.

'In this work, we use FullFact.



Temporal and Structural Features

Capturing the evolution of misinformation over time and its
propagation through the structure of a social network is a
critical aspect of our framework. We propose the use of Re-
current Neural Networks (RNNs) and Temporal Graph Net-
works (TGNs) to address these challenges.

Temporal Features with Recurrent Neural Networks
(RNNs). In the context of misinformation grading, we con-
sider each piece of content along with its associated time-
stamped events (likes, shares, comments, etc.) as a sequence
of inputs. Let X = x1,22,...,27r denote the sequence of
features associated with a piece of content from time 1 to
T,and b = by,bs,...,br be the corresponding sequence
of misinformation scores. An RNN updates its hidden state
h, at each time step ¢ based on the current input x; and the
previous hidden state hy_1:

hi = c(Wrhi—1 + Upzt + by) 4

where W}, and U, are weight matrices, by, is a bias vector,
and o is an activation function. The misinformation score at
time ¢ is then computed as

bt = U(Woht + bo) (5)

where W, is a weight matrix and b,, is a bias vector.

Temporal Graph Networks (TGNs). TGNs (Rossi et al.
2020) capture both the structural and the temporal aspects
of a graph, making them an ideal tool for our task. TGNs
work by maintaining an evolving node-level state that is up-
dated every time an interaction involving that node occurs.
The TGN updates the state of a node based on its previous
state, the timestamp of the interaction, and the states of the
interacting nodes. We propose to deploy a TGN to capture
the temporal evolution of each node’s neighbourhood, which
is often overlooked in traditional GCN-based methods.

TGNs model the social network as a graph G(V, E, T),
where V' represents the set of nodes (users), E is the set of
edges (relationships and interactions), and 7T is the times-
tamp associated with each edge (interaction). Each node
v € V maintains an evolving state s(v,t) that is updated
every time an interaction (or update in the relationship, like
a user follows/ unfollows another one) involving node v oc-
curring at time ¢. The updated state s(v,t’) (where t’ > t) is
computed as

s(v,t') = f(s(v,t),s(u,t),t' —t,z(v,u,t’))  (6)

where f is a function that combines the previous state of
the node s(v, t), the state of the interacting node s(u, t), the
time difference between the current and the previous inter-
action t’ — t, and the features x(v, u, t') associated with the
interaction.

Temporal Message Passing: The temporal aspect of TGNs
is crucial here. Misinformation does not propagate instan-
taneously, but rather spreads over time in a social network.
TGNs, through temporal message passing, can model this
aspect by learning from the sequence of interactions. For in-
stance, a retweet or a reply that supports a rumor at a later
stage may be more impactful in the spread of the rumor than
an earlier interaction.

Memory Modules: The memory modules in TGNs can cap-
ture the state of a user (node) over time. This is helpful as
user behavior might change as the rumor spreads: they might
initially believe and propagate the rumor, but could later de-
bunk it when provided with new information.

By continuously updating user states and their interac-
tions, TGNs can provide a dynamic grading of the propa-
gation of misinformation. For instance, a rumor might ini-
tially have a high misinformation score because many users
are propagating it. However, as more users debunk the ru-
mor, its misinformation score can decrease over time. TGNs
can also help identify key propagators of misinformation in
a social network. These are the nodes that play a significant
role in the spread of misinformation. Our proposed model
has significant advantages. For instance, a user tweeted a
doctored image falsely showing a major Ukrainian city be-
ing under siege. This tweet might initially propagate rapidly
among certain user groups, leading to a high misinformation
score. As the image gets fact-checked and debunked by reli-
able sources, our framework will update the misinformation
score, reflecting the new truth value of the claim. This is im-
portant because it ensures that users who encounter the tweet
later, perhaps through search or late shares, would have an
accurate understanding of its credibility. Also, a tweet claim-
ing that vaccines cause autism initially spreads rapidly and
receives a high misinformation score due to its wide prop-
agation by anti-vaccination advocates. However, using the
proposed framework, as more credible users, health experts,
and fact-checking organizations debunk this claim, the mis-
information score would dynamically decrease. This is cru-
cial to reflect the changing nature of the information land-
scape and to prevent outdated misinformation scores from
misleading social network users.

Transformers for Temporal and Contextual Attention.
For a given sequence of time-stamped social media events
E = {ej,eq,...,e,} associated with a piece of content
(tweet), we feed these events into RoOBERTa. Each event
e; is represented as a vector combining its features xz(e;)
and the time difference At(e;) from the previous event. For
instance, in the context of the FakeNewsNet dataset, each
retweet, reply, or like event associated with the tweet 7} can
be an event in E. The features x(e;) for an event e; include
the text of the tweet, the user profile information, and the
number of retweets/likes/replies at the time of the event. The
time difference At(e;) is the time elapsed since the previous
event. ROBERTa processes this sequence and produces a se-
quence of output vectors O = {01, 09, ..., 0, }, where each
0; is a weighted combination of all input events:

0; = Attention(Q;, K, V), @)

where (Q; = W, * e; is the query associated with event e;.
K =Wy x Eand V = W, x E are the keys and the values
computed from all events, W, Wy, W, are learned weight
matrices, and Attention is the scaled dot-product attention
function.

By combining TGNs and RoBERTa, we effectively cap-
ture the structural and the temporal aspects of misinforma-
tion propagation, thus providing a more comprehensive ba-
sis for the dynamic grading of misinformation.



Ensemble

Our ensemble combines three models:

(1) Content Analysis Model (CAM). To analyze the se-
mantic content of the posts, we use RoBERTa, which we
fine-tune for our task of dynamic misinformation grading.
To capture stylistic features prevalent in misinformation,
such as the usage of capital letters, exclamation marks, and
other non-standard grammatical structures, we propose im-
plementing a stylometric analysis. In this study, our stylo-
metric analysis focuses on the extraction of stylistic fea-
tures that have been shown in previous research to be in-
dicative of misinformation (Przybyla/2020). These features
include: (i) Lexical features: measures of lexical richness,
such as type-token ratio, hapax legomena, and average word
length. Lexical features also include the use of specific types
of words, like the use of emotionally charged words, bi-
ased language, or sensational terms. (ii) Syntactic features:
This refers to the arrangement of words in a sentence and
grammatical structures. Unusual or non-standard syntactic
structures could potentially be indicative of misinformation.
(c) Punctuation: The use of certain punctuation marks, such
as exclamation points or capital letters, has been shown to be
indicative of misinformation. For example, excessive use of
exclamation marks or all capital letters can indicate a sensa-
tionalistic tone that is common in misinformation. (d) Com-
plexity: This includes sentence length, sentence complexity,
and the use of passive versus active voice. The output of the
Content Analysis Model (CAM) is a probability that a given
post is misinformation, denoted as P anf(misinformation)-
It combines the semantic understanding from RoBERTa and
the stylistic insights from the stylometric analysis to provide
a comprehensive assessment of the post content.

(2) User Behavior Model (UBM). This model focuses on
user behavior features. This includes user posting frequency,
the ratio of original posts to reposts, followers-to-following
ratio, and account age. These features are fed into a gra-
dient boosting model (XGBoost), which can handle high-
dimensional heterogeneous feature spaces and provides fea-
ture importance.

(3) Propagation Pattern Model (PPM). This model an-
alyzes the propagation patterns of the posts in the social
network. The Temporal Graph Networks (TGNs) combined
with the Transformer model (as described in the previous
section) are used here to capture the temporal and the struc-
tural aspects of the propagation of misinformation. The out-
puts from each of these models are probabilities that a given
post is misinformation. We combine these probabilities us-
ing a decision-level fusion strategy. Specifically, we use
weighted averaging where the weights are learned from the
validation data:

P(miSinformati0n> = Wy * PCA]\/[(misinformation) +
w2 * PUB]\/I(misinformation) + ws * PPPJW(misinformation)
where PCAJV[(misinformat'Lon)7 PUBJW(misinfomnation) and
Pppar(misinformation) are the probabilities output by the
Content Analysis Model, the User Behavior Model, and the
Propagation Pattern Model, respectively, and wy, we, w3 are
the weights learned from the validation data (and they sum
up to 1).

Active Learning

The goal of Active Learning is to construct a model that fits
the data accurately, while reducing the amount of labeled
data needed to construct the model. In the context of our
framework, we incorporate active learning (See Algorithm
1) to iteratively refine our misinformation grading model,
particularly during the incremental training steps. Given a
pool of unlabeled data U, and a smaller set of labeled data
L, the goal of active learning is to select data points from U
that, when labeled and added to L, are most beneficial for
improving the model’s performance. Let F' be our misinfor-
mation grading model, parametrized by 6, and let us denote
the misinformation score at time ¢ as By (z;6), for a content
x. We define the selection function S(U, F') — x, which
selects a data point = from the pool U based on the current
model F. This function is typically designed to select data
points for which the model is most uncertain or which are
expected to provide the most information if labeled. A com-
mon strategy for S is to select the data point x for which the
model’s prediction is closest to the threshold of 0.5 (i.e., the
model is most uncertain). Formally, this can be defined as
follows:

S(U,F) = argmingey|Bi(z;0) — 0.5 )

We propose an event-driven approach, where re-training
is triggered based on either change detection in the network,
or a significant change in the linguistic score. Let us de-
note as AN, the change in the network at time ¢, and as
AL, (x) the change in the linguistic score of content x at
time ¢. We can then define a re-training condition as follows:
If ANy > 7y or max,ey ALy, > Tr, re-train the model,
where 7 and 77, are pre-defined thresholds. Periodicity can
be further incorporated as a fallback option, to ensure that
the model is re-trained at regular time intervals in case the
above condition is not met for a prolonged period of time.
We denote as T the periodicity of re-training (e.g., once ev-
ery 7 days).

Algorithm 1: Active Learning for Misinformation Grading

Require: U: unlabeled data pool, L: labeled data, F': mis-
information grading model, 7 : network change thresh-
old, 77 : linguistic score change threshold, 7': re-training
periodicity

1: Initialize F' with initial parameters 6 using L

2: while stopping condition not met do

3: x + argming ey |Bi(z';0) — 0.5 Select a data
point

4: Obtain a label for x and add it to L

5: AN, < change in network at time ¢

6: AL (x) < change in linguistic score of x at time ¢

7: if AN; > 7y or max,cy ALy (x) > 71, or current
time — last re-training time > 7 then

8: Re-train F' with L

9: end if
10: end while




Dual Grading System

Given a social media post x, the misinformation grading
models, the Strict Model (S) and the Normal Model (),
output misinformation scores S(x;0g) and N(x;0y) re-
spectively, where g and 6 are the model parameters.

The models are trained to output a misinformation score
in the range [1,5], where 5 indicates that the post is def-
initely misinformation, and 1 that it definitely is not. The
strict model has a higher threshold 7g for classifying a post
as misinformation. Conversely, the Normal Model, with its
lower threshold 7y, is more lenient. Accordingly, we define
two distinct loss functions to train these models:

(A) Strict Model Loss. The Strict Model is designed to
minimize the number of false negatives (FN), where an ac-
tual misinformation post is not flagged as misinformation.
The loss function for this model is as follows:

o LN By —9)? ify > 3and g <y
Ls(y,9:05) = n Zl { (yi — ;)  otherwise
1=
(&)

In this equation, y and g represent the actual and the pre-
dicted misinformation scores, respectively, n denotes the
number of samples, and 5 > 1 (along with v > 1, which
is explained below) is a weight that can be adjusted based
on the specific needs of the problem at hand.

(B) Normal Model Loss. This model is designed to min-
imize the number of false positives (FP), where an actual
non-misinformation post is inaccurately flagged as misin-
formation. The loss for this model is as follows:

LN(?J/!/yHN) - E
i=1

otherwise

. _ 1 Zn:{ Yy —9;)? ify; <3andy; >y,

(i — 6i)?
(10)

In both loss functions, we use a threshold of three in
order to differentiate between misinformation and non-
misinformation posts. We tune the models separately using
their respective loss functions to output a misinformation
score in [1, 5]. This dual-model approach to misinformation
detection ensures a robust yet flexible system capable of ad-
dressing varying degrees of misinformation severity, thereby
enhancing the integrity of the information circulating in so-
cial networks.

To measure the misinformation score effectively by
deploying a temporal embargo strategy, we are interested
to capture the model’s degree of certainty (or belief) about
its own predictions. In the context of neural networks,
this can be interpreted as the entropy of the predictive
distribution (Gal and Ghahramani| 2016). The entropy
of a probability distribution provides a measure of the
uncertainty associated with the distribution. We used the
softmax model output to quantify its predictive uncertainty.
A lower entropy corresponds to a higher confidence level,
as the model predictions are more concentrated on certain
classes. This confidence can be computed as one minus
the normalized entropy. Let Ps(x;6s) and Py(z;0n)
represent the softmax outputs (predictive distributions) of
the strict and of the normal models, respectively, for content
z. Then, the entropy of these distributions is given by

Es(z) ==Y Ps(x;0s)ilog Ps(z;05); (1)

En(x) = - Py(x;0n)ilog Py(z;0x);  (12)

Here, the summations are over all classes 7. To convert these
entropy measures into confidence levels, we first normalize
them to the range [0, 1] by dividing by log K, where K is the
number of classes. Then, we subtract the normalized entropy

from 1:
_ Es(z)

Cs(e) =122 (13)
E
Cn(z)=1- 10];(;? (14)

In the dual grading system, a post is classified as misinfor-
mation if both models agree that it is misinformation after a
certain time span ¢ of observation. Mathematically, this can
be expressed as follows:

M(z;t) = {O7 otherwise,

15)
where M (z;t) is the final decision on whether the post z is
misinformation after observing it for time ¢.

In addition, a belief score threshold is introduced to fur-
ther refine the grading system. If the belief score is greater
than or equal to 0.80, the post is labeled as FALSE. If it falls
in between 0.30 and 0.80, the post is embargoed for different
time intervals and periodically checked if the model changes
its prediction. This can be expressed as follows:

FALSE, if M (x;t) > 0.80,
EMBARGO, if 0.30 < M(x;t) < 0.80,
TRUE, otherwise.

Label(z) =

(16)
where Label(x) is the final label assigned to the post x.

Experiments and Evaluation

The primary objectives of this work are three-fold: (i) to
continuously evaluate and assign a misinformation score to
tweets, (i) to develop an effective and adaptive model for
misinformation detection that incorporates a temporal em-
bargo strategy, and (iii) to define an effective retraining strat-
egy for incremental learningﬂ

Data

Datasets. For our evaluation, we used a subset of the tweets
in the five datasets shown in Table[T} AntiVax (anti-vaccine),
CONSTRAINT (COVID-19-related fake news), FakeNews-
Net, PHEME (rumor detection), and RU War (Russia—
Ukraine War). First, we carried out data annotation to as-
sign a misinformation score to tweets from each dataset. We
randomly selected 1,000 tweets per dataset (a total of 5,000
selected tweets) that had more than 50 interactions includ-
ing re-tweets, quote-tweets, likes, and comments. Note that
all tweets are timestamped.

ZCodebase and additional details

1, if S(z;6s) > 75 and N(x;60x) > Ty after time ¢,


https://drive.google.com/drive/folders/1Qh4IP-8KYrKW6AJQuIvlwHoyu4U2ON2d?usp=sharing

Dataset Details

PHEME (Derczynski and Bontcheva2014) 330 rumor threads collected from Twitter, each having an average of 100 tweets.

AntiVax (Hayawi et al.|[2022)
CONSTRAINT (Patwa et al.[2021)
FakeNewsNet (Shu et al.|[2020)
RU War (Chen and Ferrara|2022)

Over 1.8 million tweets from the anti-vaccination movement collected between 2019 and 2021.
17,000 English tweets (COVID-19), annotated as either real or fake, with an equal distribution.
Data from two fact-checking websites, PolitiFact and GossipCop, over 23,000 news articles.
Tweets from Feb 22,2022 through Jan 8, 2023 collected using hashtags related to RU war.

Table 1: The five real-world datasets we used for the performance evaluation of our framework.

Annotators. We used Amazon Mechanical Turk (MTurk)
to perform the annotation. The MTurk workers, also known
as Turkers, were presented with the tweets and were asked to
evaluate the veracity of each tweet on a scale from 1 (mean-
ing completely true) to 5 (meaning completely false). Each
tweet was evaluated by at least three different Turkers to en-
sure a robust annotation process. The Turkers were given
clear and detailed guidelines in order to help them distin-
guish between different levels of misinformation. We aggre-
gated the scores by the different Turkers by averaging.

Inter-Annotator Agreement. The annotations were
largely consistent, with a very high inter-annotator agree-
ment of 0.83 in terms of Krippendorff’s Alpha.

Average Misinformation Scores. The average misinfor-
mation scores for the tweets in the PHEME, the AntiVax,
the FakeNewsNet, the CONSTRAINTS, and the RU War
datasets were 3.1, 3.8, 2.9, 3.2, and 3.2, respectively, sug-
gesting a varying degree of misinformation across the differ-
ent datasets. We noted that the AntiVax dataset had a much
higher average misinformation score of 3.8, while the scores
for the other datasets were quite close, ranging in [2.9; 3.1].

Experiments and Evaluation

Comparison to Human Annotations Using QWK. First,
we used the Quadratic Weighted Kappa (QWK) as an eval-
uation measure to quantify the performance of our misin-
formation detection model. QWK considers the possibility
of agreement occurring by chance, which makes it a more
reliable measure than simple percent agreement calculation.
QWK also takes into account the order of the categories and
gives more weight to disagreements when the categories are
further apart. QWK is a robust statistical measure, specifi-
cally designed to evaluate the agreement between two raters,
each of which classifies N items into C' mutually exclusive
categories. In our scenario, the two raters were the human
annotators (averaged scores, used as a gold standard) and
the scores from our misinformation detection model, both
assigning a misinformation score on a scale from 1 to 5. Fig-
ure [1) shows that our model achieves a QWK score of 0.85
on the PHEME dataset, 0.89 on the AntiVax dataset, 0.83 on
the FakeNewsNet dataset, 0.77 on the RU War dataset, and
0.81 on the CONSTRAINTS dataset. These scores indicate
a substantial agreement between the model’s predictions and
the human annotations (gold standard), reflecting the robust-
ness and the effectiveness of our proposed model in con-
tinuous misinformation scoring. Our model has consistently
produced QWK scores above 0.77, thus demonstrating its
ability to adapt to different types of data and different types
of misinformation.
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Figure 1: QWK score for our model across five datasets.

Comparison to Previous Models over Different Times-
tamps. Table compares our system’s performance
to five state-of-the-art misinformation detection models:
CAMI (Yu et al.|2017), FNED (Liu and Wu|2020), GRU (Ma
et al.|2016), and (Yue et al.|[2022). In order to understand
the model’s real-time performance and its ability to adapt to
rapidly evolving information landscapes, we compare over
three different time frames: 24 hours, 12 hours, and 30 min-
utes. We can see that our system consistently outperforms
the other systems in terms of F1 score across the five datasets
and also across the three timeframes. The most sizable im-
provements are observed for AntiVax and RU War.

Per-class Performance over Time. Figure [2] shows the
per-class misclassification ratio for our framework on the
FakeNewsNet dataset for tweets at different timestamps. We
can see for Class 1 (entirely true) a consistent decrease in
the misclassification ratio over time from 0.21 at 15 minutes
to 0.15 after a day. For Class 2 (mostly true tweets with mi-
nor inaccuracies), the decrease is from 0.19 to 0.14. Class
3 (partially true tweets with significant inaccuracies) main-
tains a steady misclassification ratio of 0.25 during the ini-
tial 45 minutes, and then gradually decreases to 0.18. The
most sizable decrease is observed for Classes 4 and 5, which
represent false tweets with minor elements of truth and en-
tirely false tweets, respectively. Class 4 begins with a high
misclassification ratio of 0.53 at 15 minutes, and decreases
to 0.11. For Class 5, the misclassification ratio drops from
0.58 to 0.15. Overall, the results indicate a steady decrease
in misclassification for all classes over time, particularly for
false tweets.



F1 Score

Dataset / Time
Our framework CAMI (Yuetal.2017) FNED (Liu and Wu|2020) GRU (Ma et al.[2016) (Yue et al.[2022)

AntiVax / 24h 0.941 0.861 0.892 0.814 0.820
AntiVax / 12h 0.901 0.812 0.842 0.683 0.790
AntiVax / 30m 0.881 0.752 0.803 0.579 0.748
CONSTRAINT / 24h 0.931 0.843 0.866 0.802 0.801
CONSTRAINT/ 12h 0.895 0.808 0.832 0.661 0.772
CONSTRAINT / 30m 0.870 0.736 0.791 0.518 0.721
FakeNewsNet / 24h 0.920 0.848 0.840 0.849 0.810
FakeNewsNet / 12h 0.872 0.791 0.831 0.790 0.760
FakeNewsNet / 30m 0.856 0.736 0.784 0.715 0.691
PHEME / 24h 0.905 0.852 0.848 0.867 0.816
PHEME/ 12h 0.856 0.768 0.819 0.828 0.772
PHEME / 30m 0.811 0.701 0.723 0.820 0.607
RU War / 24h 0.942 0.758 0.728 0.810 0.711
RU War/ 12h 0.863 0.622 0.548 0.692 0.506
RU War / 30m 0.620 0.573 0.501 0.606 0.481

Table 2: Comparing our framework to various models across five datasets and three timestamps (F1 score). For fair comparison,

here the femporal embargo strategy is turned off for our method.
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Figure 2: Per-class misclassification ratio for our framework
on FakeNewsNet for tweets at different timestamps.

Note that the FakeNewsNet dataset includes examples
collected from two fact-checking organizations: PolitiFact
and GossipCop. We looked into the performance for each
subset and we found some notable differences. As Politi-
Fact largely deals with political claims while GossipCop fo-
cuses on celebrity gossips, the nature of misinformation is
inherently different. Political misinformation is more strate-
gically crafted and nuanced, making it more challenging to
classify accurately within a short period of time. In contrast,
celebrity gossips are less sophisticated, enabling quicker and
more accurate classification early on. Since the PolitiFact
subset contains more time-sensitive and rapidly evolving in-
formation, the accuracy of classification improves signifi-
cantly over time as more context becomes available. On the
other hand, GossipCop data is relatively static, and thus the
classification accuracy does not improve as much over time.

Impact of the Temporal Embargo and the Dual Loss.
To evaluate the impact of the temporal embargo strategy, we
compared our model’s initial classification (before the em-
bargo) and the final classification (after the embargo). The
results are shown in Table[3] where we also compare the im-
pact of the loss used: strict, normal, and dual. We can see
sizable improvements when using the embargo strategy, as
well as when using the dual loss.

Model w/o Temporal Embargo w/ Temporal Embargo
Strict loss 0.830 0.901
Normal loss 0.760 0.860
Dual (strict+normal) loss 0.847 0.952

Table 3: Impact of the temporal embargo and the loss (F1).

Table [] further shows the reduction in the percentage of
interactions when using the embargo strategy. This is cal-
culated as the number of interactions within the embargo
period divided by the total number of interactions in the
dataset. We can see sizable reduction with a longer embargo,
especially for the FakeNewsNet and the PHEME datasets.

Impact of the Retraining Strategy. Table [5] shows the
impact of our retraining strategy for incremental learning.
We can make several interesting observations:

* Performance Gains: Comparing the performance before
and after retraining in columns 2 and 3, we can see
consistent and sizable performance gains across the five
datasets when using retraining.

* Response to New Patterns: The following column 4 in
the table shows to what extent the model can adapt to
new misinformation patterns post retraining. For exam-
ple, in the RU War dataset, a new pattern emerged where
misinformation was propagated through manipulated im-
ages. Our retrained model successfully identified 88% of
these new instances, which is a sizable improvement over
the 72% before retraining. Note that we did not use any
visual training for the identification of this new pattern.

* Computational Efficiency: Column 5 shows that retrain-
ing does not incur substantial computational overhead,
with time increasing by 13-16%, which is acceptable
given the sizable improvement in model performance.

* Stability vs. Plasticity Trade-off: Our retraining strategy
aimed to maintain a balance between stability (preserv-
ing old learnings) and plasticity (adapting to new pat-
terns). On the AntiVax dataset, the retrained model main-
tained an accuracy of 78% on old instances, while im-
proving the accuracy on new instances from 64% to 81%.
(Additional analysis, not shown in the table.)



Datasets

Temporal Embargo PHEME AntiVax FakeNewsNet CONSTRAINTS RU War

R Q C L R Q C L R Q C L R Q C L R Q C L
10 min 5 4 6 7 3 2 3 2 6 5 7 8 4 3 5 6 2 1 2 2
20 min 10 8§ 12 14 6 4 6 4 12 10 14 16 8 6 10 12 4 2 4 4
30 min 15 12 18 21 9 6 9 6 18 15 21 24 12 9 15 18 6 3 6 6
45 min 225 18 27 315 135 9 135 9 27 225 315 36 18 135 225 27 9 45 9 9
60 min 30 24 36 42 18 12 18 12 36 30 42 48 24 18 30 36 12 6 12 12
240 min 60 48 72 84 36 24 36 24 72 60 84 96 48 36 60 72 24 12 24 24

Table 4: Reduction in the percentage of interactions when using our framework with temporal embargos of different lengths:
re-tweets (R), quote tweets (Q), comments (C), and likes (L).

Dataset Accuracy before Retraining Accuracy after Retraining Response to New Patterns Retraining Time Increase
PHEME 76% 82% 70% 12%
FakeNewsNet 70% 78% 75% 14%
AntiVax 72% 79% 85% 16%
RU War 78% (old), 64% (new) 78% (old), 81% (new) 81% 15%
CONSTRAINTS 75% 83% 80% 15%

Table 5: Impact of the retraining strategy in our framework across the five datasets.

Related Work (1)

Early work on misinformation detection focused on extract-
ing various features from content and user behavior; see
(Meel and Vishwakarma) |2020) for a recent survey. Sub-
sequently, advanced machine learning and deep learning
techniques started to dominate the field. Zhou and Zafarani
(2018) used Support Vector Machines (SVM) to classify
fake news, based on account, social graph, and linguistic
features. However, these models faced limitations in their
adaptability to new information and to context changes, and
they lacked the ability to account for temporal changes.

Ruchansky, Seo, and Liu| (2017) introduced the CSI
model, which incorporated an LSTM in order to capture
the temporal dependencies in the propagation of news. Ma
et al.[(2016) proposed a deep learning-based model that uses
neural networks to learn representations of news articles for
fake news detection. However, both models lack an effective
mechanism for dynamic updates based on new information
or to context changes.

Considering the complex relationship within social net-
works, graph-based approaches have been proposed. [Wu
and Liu| (2018) developed a Graph Convolutional Network
(GCN) based model to detect fake news. Similarly, Monti
et al. (2019) presented a geometric deep learning approach
to misinformation detection, exploiting the graph structure
of social networks. Such models often failed to effectively
integrate temporal features, which limited their effective-
ness.

Vosoughi, Roy, and Aral|(2018) conducted a comprehen-
sive study on the spread of true and false news online, but
their work lacked an explicit mechanism for explaining their
model’s decisions. [Shu et al.|(2017) proposed an ensemble
of multiple specialized detectors to capture different aspects
of the fake news. However, the dynamic adaptation of these
models to new information or context changes still presents

a challenge.

Barnabo et al.| (2023) leveraged active learning strategies
applied to Graph Neural Networks for misinformation de-
tection where their proposed architecture called Deep Error
Sampling (DES) combined with uncertainty sampling, per-
forms equally or better than common active learning strate-
gies and the only existing active learning procedure designed
for fake news detection to date. FANG (Nguyen et al.|2020)
leveraged a graph-based social context representation, out-
performing other models in capturing the social context and
achieving significant improvements in fake news detection,
even with limited training data. Rumor Gauge (Vosoughi,
Mohsenvand, and Roy|[2017)) predicted the veracity of ru-
mors on Twitter in real-time, but did not provide an inter-
vention strategy. The study of (Barnabo et al.[2022) high-
lighted the scarcity of high-quality benchmark datasets for
online misinformation detection and the potential overesti-
mation of state-of-the-art approaches due to this limitation.
They presented FbMultiLingMisinfo, a multilingual bench-
mark dataset derived from Facebook and augmented with
Twitter propagation paths.

Relevant to our objectives, [Friggeri et al| (2014) inves-
tigated the spread of rumors on Facebook, focusing on the
early stages of rumor propagation. They analyzed user en-
gagement and debunking behavior to understand the factors
contributing to the persistence of misinformation. Another
work (Djenouri et al|[2023) introduced a parallel pattern-
mining framework called DMRM-FNA to address the dif-
ficulties in the dynamic assessment of misinformation us-
ing big data exploration, but the work mainly focused on
improving the computational cost and did not mention how
temporal intervention can help in mitigating misinformation
propagation. Azzimonti and Fernandes| (2023) analyzed the
impact of social media network structure and fake news on
misinformation and polarization in society. They explored
the evolution of agents’ opinions and the role of internet bots



in spreading fake news and they found that even with a rela-
tively small percentage of agents believing fake news, signif-
icant misinformation and polarization can occur, emphasiz-
ing the importance of network effects. (Agarwal et al.|2022)
introduced THINK, a novel framework for network-based
time series forecasting that leveraged hypergraph learning
and hyperbolic properties. By capturing higher-order rela-
tions and scale-free characteristics, THINK outperformed
state-of-the-art methods across various tasks. [Tardelli et al.
(2023) presented the first dynamic analysis of coordinated
online behavior by building a multiplex temporal network
and employing dynamic community detection. In that di-
rection, (Hristakieva et al|2022)) investigated the interplay
between propaganda and coordinated behavior in online de-
bates, specifically focusing on the 2019 UK general election
on Twitter. Although the primary objectives of these stud-
ies are different, the results demonstrated that coordinated
communities exhibit varying levels of temporal instability,
emphasizing the need for dynamic analyses.

As mentioned in the survey of (Meel and Vishwakarma
2020), the two major issues are real-time learning for fact-
checking to adapt to emerging misinformation and to pro-
vide up-to-date detection of false information, and the task
of determining the truthfulness or accuracy of information,
which becomes challenging due to the complex and dy-
namic network structure of social platforms. The existing
work does not specifically address the continuous grading
of misinformation or whether and how temporal interven-
tion can reduce misinformation propagation. To the best of
our knowledge, ours is the first work to propose a compre-
hensive dynamic assessment framework for misinformation
monitoring and reducing the propagation by deploying em-
bargo strategies.

Conclusion and Future Work

We presented a dynamic system for real-time evaluation and
grading of misinformation on Twitter, leveraging Temporal
Graph Network and Recurrent Neural Networks (RNNs),
along with an innovative temporal embargo strategy. The
effectiveness of our framework was validated on five dif-
ferent social media misinformation datasets, highlighting its
robustness and adaptability. In terms of our primary objec-
tives, the model was successful in continuously evaluating
and assigning misinformation scores to tweets, demonstrat-
ing strong performance at different time points. The model’s
performance compared favorably to other state-of-the-art
misinformation detection models across diverse datasets and
timeframes.

In future work, we will focus on further refining these
techniques specifically towards multi-modal misinformation
detection and inclusion of propaganda in misinformation
propagation.

Broader Perspective, Ethics, and Competing Interests.
Our framework for real-time evaluation of Twitter misinfor-
mation, despite its aim to mitigate harm, may raise ethical
issues related to user privacy, censorship, and misuse poten-
tial. Improper deployment of the framework could lead to
mass surveillance or censorship, infringing on privacy rights
and freedom of speech. We advocate for responsible and

transparent use, respecting individual privacy and freedom
of expression, with clear communication about its deploy-
ment and the option for users to opt-out. We acknowledge
the possibility for potential false positives and false nega-
tives, and we suggest continuous research, development, and
stakeholder feedback for system refinement. We declare no
competing interests. The research was conducted indepen-
dently, using publicly available datasets, and the framework
was developed for academic and public benefit aiming to
better understand and fight misinformation online.
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